Introduction

Spectral and Radiometric Issues for Level 1C

L. Larrabee Strow and Scott Hannon

Atmospheric Spectroscopy Laboratory (ASL) Physics Department and Joint Center for Earth Systems Technology University of Maryland Baltimore County (UMBC)

AIRS Science Team Meeting Nov. 3-5, 2010, Greenbelt, MD

Introduction

- Science using AIRS is pushing below the 0.03K level!
- Is the instrument and the AIRS Radiative Transfer Algorithm up to this?
- Examine AIRS biases relative to ECMWF versus viewing angle. Absolute errors remain uncertain, but may highlight other errors.
- Assimilation community has been doing this forever...

861 cm⁻¹ Window Channel Bias vs Viewing Angle

Left: Versus scan angle, Right: Versus secant of viewing angle

- Window channel, don't expect bias linear in secant.
- Note asymmetric behavior of AIRS.
- IASI flat bias until very high angles.
- AIRS asymmetry related to polarization?

 Introduction
 Scan Angle Biases
 Doppler Effect Biases
 IASI vs AIRS Biases
 Conclusions

 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

732 cm⁻¹ Opaque Channel Bias vs Viewing Angle

Left: Versus scan angle, Right: Versus secant of viewing angle

- AIRS ch1 and ch2 are on different sides of a spectral line
- AIRS has both symmetric and anti-symmetric behavior
- IASI almost symmetric
- AIRS asymmetry is xtrack frequency dependence

Fitting Function for Bias

Introduction

$$Bias(xtrack) = a_1 + a_2 \times (secant-1) + a_3 \times (secant-1)^2 + a_4 \times scan_angle$$

where the Bias is relative to ECMWF for a large statistical set of clear ocean spectra (0-25 Deg. North), secant is the secant of the satellite zenith angle, and scan_angle is the AIRS scan mirror angular position.

- \bullet \bullet \bullet is the nadir bias (scan_angle == 0).
- ② $a_{2,3}$ account for viewing angle bias, mostly spectroscopy, symmetric
- $a_1 a_2$ should only contain instrument and profile errors, no spectroscopy errors (for opaque channels). Note: a_3 is small.

a₄ Term: Linear asymmetric bias term

a₄ Term: Linear asymmetric bias term

a₄ Term, Now include IASI

a₄ Term, Now include IASI, ZOOM

Clue: Not seen in IASI!

Introduction

- Larger biases in window regions probably related to polarization. AIRS has aluminum overcoat mirror, IASI mirror is gold
- Closer examination of opaque channel biases reveals that this "hash" is a frequency shift!
- Evan Manning quickly postulated this was a Doppler shift, earth's rotation relative to AIRS changes sign at nadir.
- IASI does not exhibit the Doppler shift due to METOP "yaw steering" and image motion compensation?
- All previous frequency calibration measurements used granule averages!

Re-examination Frequency Calibration

Now separate calibration by xtrack position.

This is a one-day frequency calibration with orbit phase encoded by color. Effect largest at equator (Orbit phase == 0, 180, 360). Consistent with Doppler effect.

Another View: Frequency Calibration vs Orbit Phase

Examine other Bias Coefficients: a_2

Linear secant term: Spectroscopy Errors.

Examine other Bias Coefficients: a_2 , ZOOM

$a_1 - a_2$ Removes Spectroscopy, Asymmetric Errors This term contains instrument and ECMWF profile errors.

$\overline{a_1 - a_2}$, now with IASI

IASI and AIRS similar, implies profile errors.

$a_1 - a_2$, Zoom in Window Region A/B Calibration variation shows up, 850-900 cm⁻¹.

Bias with Spectroscopy Errors and Asymmetry Removed AIRS 0.4 IASI Nadir Bias - Secant Dependence (K) 0.3 0.2 0.1 -0.2 -0.3-0.4 800 850 900 950 1000 Wavenumber (cm⁻¹)

$a_1 - a_2$, Zoom in 4.3 μm R-branch

Very different form than secant error. More consistent with profile error.

IASI Secant Bias over NH Land Note HNO₃ and dip near 790 cm⁻¹.

Conclusions

Introduction

- AIRS radiative transfer algorithm (RTA) has secant angle biases of up to 0.6K. Needs to be fixed.
- AIRS has instrumental asymmetric cross-track biases of up to ~0.1-0.2K. Probably polarization?
- Doppler effect also contributes to biases, this one should be easy to fix.
- Examination of the secant dependence of the AIRS biases relative to ECMWF has proven very fruitful.
- Biases that we can attribute to AIRS or the RTA are significant relative to the more demanding AIRS applications (CO_2 , for example).